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The Partially Observed Stochastic

'
; Minimum Principle -
i N
. 9
= JOHN BARAS N
SYSTEMS RESEARCH CENTER, UNIVERSITY OF MARYLAND ' ;
g COLLEGE PARK, MD 20742 USA hde2
ROBERT J. ELLIOTT o
DEPARTMENT OF STATISTICS AND APPLIED PROBABILITY, UNIVERSITY OF ALBERTA '.:J.
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UNIVERSITAT KONSTANZ, POSTFACH 5560, D-7750 F.R. GERMANY e
, ;2
) P
'
1. INTRODUCTION. .‘.:-:.
N
o
Various proofs have been given of the minimum principle satisfied by an optimal N
control in a partially observed stochastic control problem. See, for example, the papers :-__
RS
by Bensoussan (1], Elliott [5], Haussmann (7], and the recent paper [9] by Haussmann in o
™
,
which the adjoint process is identified. The simple case of a partially observed Markov ;"-
chain is discussed in the University of Maryland lecture notes (6] of the second author. '\
-
RS

N
We show in this article how a minimum principle for a partially observed diffusion

can be obtained by differentiating the statement that a control u* is optimal. The results o

of Bismut (2], [3] and Kunita [10}, on stochastic flows enable us to compute in an easy and

explicit way the change in the cost due to a ‘strong variation’ of an optimal control. The

only technical difficulty is the justification of the differentiation. As we wished to exhibit

the simplification obtained by using the ideas of stochastic flows the result is not proved

-‘.'

RS

under the weakest possible hypotheses. Finally, in Section 6, we show how Bensoussan'’s ',:.':
N

I\..

minimum principle follows from our result if the drift coefficient is differentiable in the :‘.-
A
control variable. '_1\
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2. DYNAMICS.

Suppose the state of the system is described by a stochastic differential equation ®
o,
N
dft = f(t,&,u)dt-fg(t,&)dw;, ,:'\
NG,
&ER, ==z 0<t<T. (2.1) Y,
The control parameter u will take values in a compact subset U of some Euclidean space R*. :::::"
'..'\.r_ q
We shall make the following assumptions: E\: )
»h
Aj: zo is given; if zo is a random variable and P, its distribution the situation when °
Cof
S
f |z|? Po(dz) < oo for some ¢ > n + 1 can be treated, as in [9], by including an extra e
A
integration with respect to Fp. :./-:
A
Az: f : [0,T) x R® x U — R? is Borel measurable, continuous in u for each {t,z), °
W
continuously differentiable in z and for some constant K t:'_-:-
)
~1 :"::-':_ '
1+ =)™ 17t z,u)| + | f2(t,z,u)| < K. yin
Asz: ¢:(0,T]x R? — R®R" is a matrix valued function, Borel measurable, continuously "-;\
)
differentiable in z, and for some constant K, oty ::
o,
|g(tax)l + |gz (t’z)l < K. :-'?
N
o
The observation process is given by s
R
@
dy = h(&)dt + du; R
A
wER™, y=0 0<t<T. (2:2) o
:;"-
In the above equations w = (w!,...,w") and v = (v!,...,v%) are independent Brownian o
e
-l
motions. We also assume I'::’
"
)
. . . . . "
Ag: h: R® — R™ is Borel measurable, continuously differentiable in z, and for some Ei:
N
constant K3 *.
:a::.r"
[h(t, z)| + |h2(t, z)| < K3. PSS
N
BASK
=2, oot
®
N
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REMARKS 2.1. These hypotheses can be weakened. For example, in A4, & can be
allowed linear growth in z. Because g is bounded a delicate argument then implies the
exponential Z of (2.3) is in some L? space, 1 < p < 0o. (See, for example, Theorem 2.2 of
[8]). However, when h is bounded Z is in all the L? spaces, (see Lemma 2.3). Also, if we
require f to have linear growth in u then the set of control values U can be unbounded
as in [9]. Our objective, however, is not the greatest generality but to demonstrate the
simplicity of the techniques of stochastic flows.

Let P denote Wiener measure on the C ([0,T),R"*) and pu denote Wiener measure
on C([0,T],R™). Consider the space 1 = C([0,T},R") x C([0, T}, R™) with coordinate

functions (z¢,y:) and define Wiener measure P on {1 by
P(dz,dy) = P(dz)u(dy).

DEFINITION 2.2. Write Y = {Y;} for the right continuous complete filtration on
C([0,T], R™) generated by Y,° = o{y, : s < t}. The set of admissible control functions U

will be the Y -predictable functions on {0,T] x C([|0,T], R™) with values in U.

For u € U and z € R? write €;.¢ (z) for the strong solution of (2.1) corresponding to

control u, and with £}, (z) = z. Write

1

(e = e ([ w0 - 5 [ (es, @)7) 23

and define a new probability measure P* on 2 by %’;— = Zgr (z0). Then under P*
(€5 (z0),yt) is a solution of (2.1) and (2.2), that is £, (zo) remains a strong solution of
(2.1) and there is an independent Brownian motion v such that y, satisfies (2.2). A version
of Z defined for every trajectory y of the observation process is obtained by integrating by

parts the stochastic integral in (2.3).

LEMMA 2.3. Under hypothesis A, fort < T,

E[(Zg(z0))?) < oo forallue U andallp, 1<p<oo.
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PROOF.
t

28, (z0) = 1+ / 28, (z0)h(€L, (20))'dyy.

Therefore, for any p there is a constant Cp such that

t

E[(2%(20)"] < 61 +E(/o (28, (z0)) R (g8, (zo))zdr)p/z].

The result follows by Gronwall’s inequality.
COST 2.4. We shall suppose the cost is purely terminal and given by some bounded,

differentiable function
c(é5r (20))
which has bounded derivatives. Then the expected cost if control u € U is used is

J(u) = Ey[c(&r (zo))]-

In terms of P, under which y; is always a Brownian motion, this is

J(e) = E[ 237 (zo) e(€8r (20))]- (2.4)
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3. STOCHASTIC FLOWS.

For u € U write

t t
€ (z) =2+ / F(ry €2, (2), wr)dr + / o(r, €, (z))dw, (3.1)

for the solution of (2.1) over the time interval [s,¢t] with initial condition £}, (z) = z. In
the sequel we wish to discuss the behaviour of (3.1) for each trajectory y of the observation
process. We have already noted there is a version of Z defined for every y. The results of

Bismut [2] and Kunita [10] extend easily and show the map
¢ : R~ R

is, almost surely, for each y € C(|0,T], R™) a diffeomorphism. Bismut [2] initially gives

proofs when the coefficients f and ¢ are bounded, but points out that a stopping time

argument extends the results to when, for example, the coefficients have linear growth.
Write ||€%(zo)]lt = ,sup |63 5 (z0)|- Then, as in Lemma 2.1 of [8], for any p,

1 < p < oo using Gronwalf"s_and Jensen’s inequalities

)

t
I o)lf < (14 lnol +| [ 5, (aol)cur

almost surely, for some constant C.

Therefore, using Burkholder’s inequality and hypothesis A3, ||£“(zo)||T is in L? for
allp, 1 <p<oo.

Suppose u* € U is an optimal control so J(u*) < J(u) for any other u € U. Write

*

. a
&, () for €, (-). The Jacobian ;"t (z) is the matrix solution C; of the equation for s < ¢,
¥ L I

dCy = f2(t, &, (z), w')Crdt + ) gl (¢, £, (2))Crduw} (3.2)
1=1

with C, = 1.

Here I is the n x n identity matrix and ¢{) is the i** column of g. From hypotheses A,

and Aj, f; and g, are bounded. Writing ||C|ir = sup |C,| an application of Gronwall’s
0<s<t
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Jensen’s and Burkholder’s inequalities again implies ||C||r is in L? for all p, 1 < p < oco.

Consider the related matrix valued stochascic differential equation
t
Dy=1- / D, f.(r, €, (), ut)dr
8

not
Y [ Dl e, € @)
i=1 7?

noot
+ Z/ D,(gg‘) (ry &y (z))')zdr. (3.3)
i=1 ”*
Then it can be checked that D;C; = I for t > s, so that D; is the inverse of the Jacobian,
. -1

that is Dy = (g'b‘;@—) . Again, because f, and g, are bounded we have that ||D||; is in
every L?, 1 < p < o0.

For a d-dimensional semimartingale z; Bismut [2] shows one can consider the flow

€, (2t) and gives the semimartingale representation of this process. In fact if 2; = 2z, +

n .
At + Y f : Hidw; is the d-dimensional semimartingale, Bismut’s formula states that
=1

ute) =2t [ (100 €0 () )

g ¢} "L 9%, (=
+ 3000, €, (), w) o (o4 23 T g g )ar
1=1

2 az?
tag;, (2r) n At " . ae:, i
+./; oz 4, + ‘_A\:.l:/‘ (9 (r, & () + 32 (zr)Hi)dw,.

1=1

(3.4)
DEFINITION 3.1. We shall consider perturbations of the optimal control u* of the fol-
lowing kind: For s € [0,T), h > 0 such that 0 < s < s + h < T, for any other admissible
control « € U and A € Y, define a strong variation of u* by

u*(t,w) if (t,w) ¢ [s,s+h]x A
i(t, w) if (t,w) € [s,s + h] x A.

ult,w) = {

Applying (3.4) as in Theorem 5.1 of [4] we have the following result.

THEOREM 3.2. For the perturbation u of the optimal control u* consider the process

a=at [ TSN (11, € (a0 w) = S0 6 ) ) (59)
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Then the process £, ,(2) is indistinguishable from ¢;'; (z).

PROOF. Note the equation defining 2; involves only an integral in time; there is no

martingale term, so to apply (3.4) we have H; = 0 for all 1. Therefore, from (3.4)

Eor(ze) =2+ /: f(r, &, (2r), up)dr
N /;t <6£,‘g£zr)) (afa',ayz(z,))—x e, € o) ) — F(or €62 (20, w2

t
+/ g(r, 6;,1' (zf))dwf°

However, the solution of (3.2) is unique so

€t (2t) = & (2)-

REMARKS 3.3. Note that the perturbation u(t) equals u*(t) ift > s+h 50 2 = 2541
ift> s+ hand

Eor (2) = &t (204 ) = Eainge (E0an (2))-
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4. AUGMENTED FLOWS.
Consider the augmented flow which includes as an extra coordinate the stochastic
exponential Z;, with a ‘variable’ initial condition z € R for Z,,(-). That is, consider the

(d + 1) dimensional system given by:

t t
el =2+ [ 10 €6, @), w)ar+ [ otri€l, (2w

Zig(wd) =2+ [ 73, (o, 06, @

Therefore,

Zy4(2,2) = 22,, ()

=zexp(/: (E.f(z))dyr—lf h(&, (2))d >

8

and we see there is a version of the enlarged system defined for each trajectory y by inte-
grating by parts the stochastic integral. The augmented map (z,2) — (§;,(z), Z;;(z,2))
is then almost surely a diffeomorphism of R4t!. Note that -8—5‘.;,‘;@— = 0, %f = 0 and
%g— = 0. The Jacobian of this augmented map is, therefore, represented by the matrix

8¢, (= 0

BZ‘Iﬁz!z,z! 8Z‘|5zgz,z!

and for 1 < 1 < d from equation (3.3)

(z,2) . ahf(f;',(z)) O 40 (2)
3t$; Z/ Zip (2 ¢y ' kaxi

. az; . (z,2)\  ;
) * a,r I
+R(E, ()15 ) dyd.
(Here the double index k is summed from 1 to n).
We shall be interested in the solution of this differential system (4.1) only in the
situation when z = 1 so we shall write Z;,(z) for Z;,(z,1). The following result is

motivated by formally differentiating the exponential formula for Z;,(z).

9
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LEMMA 4.1.

f’%@ = 2, (=) /,t ha (€, () - af’:g'z(z) - dvy)

where v = (v!,...,v"™) is the Brownian motion in the observation process.

PROOF. From (4.1) we see 8—3'.5‘;(& is the solution of the stochastic differential equa-

tion
Pl [ (BB, @) + 22, el ) i Dy 02
Write
Lus(2) = Z2y (3) /, ha a;i' - dv, )
where
dyy = h(&;;(z))dt + dvy.
Because

t
Zi@) =1+ [ 2, @ (&, (=),
8
the product rule gives

t e
Lyt (z) = / Zy e (2)hs - ;;" dv,
8

f r é; éi: a * 1f¢o*
# [ ([ he T o) 23, @R @)
a *
-%‘—’Ldr

t
+ / Z;, (H(E, () - b

¢ t e«
~ [ L W € @ + [ 25 e 2y,

z Jz
Therefore, L, (z) is also a solution of (4.2) so by uniqueness
0z, (x

REMARKS 4.2. As noted at the beginning of this section we can consider the

augmented flow
(z,2) = (&4 (2), Z,4(2,2)) forze€ R%, 2 € R,

and we are only interested in the situation when z = 1, so we write Z;, (z).

10
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LEMMA 4.3. Z;,(zt) = Z% (z) where 2 is the semimartingale defined in (3.6).

PROOF. Z},(z) is the process uniquely defined by

t
v (2) =1+ / 2%, ()R (€2, (2))dy,. (4.2)

Consider an augmented (d + 1) dimensional version of (3.6) defining a semimartingale
% = (2t,1), so the additional component is always identically 1. Then applying (3.5) to

the new component of the augmented process we have

t

Zip(ar) = 14 [ 23, ()W 5 ()t
Bt

=1+ [ 22, R (€ @)y

by Theorem 3.2. However, (4.2) has a unique solution so Z;,(2) = Z;'; (z).

REMARKS 4.4. Note that fort > s+ h

Z.:,t (2¢t) = Z;,t (2s+h )-
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5. THE MINIMUM PRINCIPLE. ::.-j
Control u will be the perturbation of the optimal control «* as in Definition 3.1. We ".
ool
shall write z = £; , (zo). Then the minimum cost is T
2
J(u*) = E(Z5r (zo)e(éox (20))] ey
= |23, (z0) 23z (2)e(Er (=) T
2
The cost corresponding to the perturbed control u is f'.;
[ ]
LN
* ILl“' |
J(u) = E[Z;,(20) Zy'r (z)e(&r (2))] R
oy
= E(Z5,(20) Z,; 1 (ze+n )c(&1 (2541 )] ::E:
LA
by Theorem 3.2 and Lemma 4.3. Now Z; 1 (-) and ¢(§; 7 (-)) are differentiable with con-
tinuous and uniformly integrable derivatives. Therefore
o
* * * * £ * !
J(u) = J(v*) = E[Z5,(20)(Z;1 (2s+h )e (&2 s (240 ) — Z5 1 (z)e(&5r (2)))] NN
s+h .::\
B[ [ M2, € (ar), w) = S04 €, (2), wi)ar] i
s oA
RV
where ?-:.;
* s * af. T (z') \ﬁ‘: '
Dls,2r) = Z3, (20) Zirr (zr) {ce (€l () ="+ %
\ T . aft 66‘ -1 .'#
(& e ( [ helha (o) G ()dvn) } (G2 () "
]
Note that this expression gives an explicit formula for the change in the cost resulting from .:;::::
a variation in the optimal control. The only remaining problem is to justify differentiating .%;
AN
the right hand side. N
AN
From Lemma 2.3, Z is in every L” space, 1 < p < oo and from the remarks at the E:_:
- - —l [ R )
beginning of Section 3, Cr = af,z and Dr = (—8—%-11'—) are in every L? space, 1 < p < oo. ®
N
Consequently, T is in every L space, 1 < p < oo. NG,
.‘ -’
Ay
-.\-‘ )
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; Therefore :
4 o
s+h
1w -Iw) = [ B[(Mez) - T ) (0 &y (ar), we) = S € (o) w0))] :
" / E[ [(s,z) - T(r z))( f(ry &, (2r), u,) — f(r, &, (2r), u;))]dr :_
“ +/ E[(r,2)(f(r, &, (a), ur) = 10, €, (20), u5) 3
% — 1l €, (2)s w) + S(5, €0 (2), w3))dr
v [ B[t s (o) w0) - 160,63 el )] p
= I (B) + Ia(h) + Is(h) + Iu(h), say.
‘ :':
a Now,
s+h :;.
LI <K [ B[INs2) = T(s,2)|0+ 1€ @)l )] 2
: <Kih _sup  E[|T(s,2) = I(s,2)[(1 + [€“(zo)llo+ )]
. 8<r<s+h
o s+h =
: B <K [ B[IDe2) - T 2)[(1+ 1€ @o)lleen ) dr R
: <Kah _sup  E[[D(s,2) — T(r,z)|(1 + 1€ (zo) s ] ‘
8<r<s+h >
. a+h -
; B <Ks [ B[N 2) Nz - 2] 3
- < K3zh sup E[II‘(r,z)] EX z.||,+h]. g
- 8<r<s+h ’
The differences |TI'(s,2,) — I'(s,z)|, |[(s,z) — I'(r,z)| and ||z — 2||,4+» are all uniformly '
bounded in some L?, p > 1, and
3 '151‘1 IT(s,2,) —T'(s,z)] =0 as. ;
X :.»
Y rleral IT(s,z) —T(r,z)| =0 as. W
Jim [z = 2o = 0.
: 13
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Therefore,

lim ([T(s, 2) — T(s, 2)llp = 0
lim |IT(s, 2) ~ I(r, )], = 0

and ’!1_13 l(llz — 2)ls+a )|lp =0 for some p.

Consequently, lim h~'It(h) =0, for k =1,2,3.

The only remaining problem concerns the differentiability of

s+h
LW = [ E[Nna)(r(r &, (o) u) - 7lr, €, (20), u0))]ar

The integrand is almost surely in L!([0, T]) so ’11_% h~YI,(h) exists for almost every s €
[0,T]. However, the set of times {s} where the limit may not exist might depend on the
control u. Consequently we must restrict the perturbations u of the optimal control u* to
perturbations from a countable dense set of controls. In fact:

1) Because the trajectories are, almost surely, continuous, Y, is countably generated
by sets {Ai,}, 1 = 1,2,... for any rational number p € {0,T|. Consequently Y; is
countably generated by the sets {4,,}, r <t.

2) Let G; denote the set of measurable functions from (1,Y;) to U C R*. (Ifu e U
then u(¢,w) € G;.) Using the L!-norm, as in (5], there is a countable dense subset
Hy, = {uj,} of G,, for rational p € [0,T]. If H¢ = |J H, then H; is a countable
dense subset of G;. If uj, € H, then, as a functionpitonstant in time, uy, can be
considered as an admissible control over the time interval [t,T] for t > p.

3) The countable family of perturbations is obtained by considering sets A,, € Y%,

functions u;, € Hy, where p <t, and defining as in 3.1

u*(s,w) if (s,w) ¢ [t,T] x Aqp
y, (8, w) if (s,w) € [t,T] x Aip.

iy (o0) = {

Then for each 1,7, p
s+h
lim b7 [ B[2) (0 6 (o) 53,) - 10 6 (a0), wD]ar (1)
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exists and equals

E[I‘(s,z)(f(s, £, (20)s wjp) — f(sy &5, (20), u'))IA,,]

for almost all s € {0, 7.

Therefore, considering this perturbation we have

Jim A7 (J(u5,) = I (") = E[T(s,2) (S (s, €, (z0)s wip) = S, &, (20), v ),
>0 for almost all s € [0,T}.

Consequently there is a set S C [0,7T] of zero Lebesgue measure such that, if s ¢ S, the

limit in (5.1) exists for all ¢, 7, p, and gives

E[T(s,2)(S (5, &4 (20)s 1) = (s, & (20), w')a, ] 2 0.

Using the monotone class theorem, and approximating an arbitrary admissible control

u € U we can deduce that if s ¢ S

E[r(s’z)(f(sa f(;,a (IO)’ "’) - f(sv f(;,n (30)1 u.))IA] >0 forany A€Y,. (5-2)

Write

aT() )

pa(2) = E* [ec(€r (z0) L 1 (€3 (20)) /he(fo,a(IO)) a2 ) 4, [ Yoo ()]

where, as before, z = &, (z0) and E* denotes expectation under P* = PY . Then p,(z)
is the co-state variable and we have in (5.2) proved the following ‘conditional’ minimum

principle:

THEOREM 5.1. Ifu® € U is an optimal control there is a set S C (0,T| of zero Lebesgue

measure such that ifs¢ S
E*[ps(z)f(s,z,u’) | Y,] < E*[p,(2)f(s,2,u) | Y,] a.s.

That is, the optimal control u* almost surely minimizes the conditional Hamiltonian and

the adjoint variable is p,(z).
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6. CONCLUSION.
Using the theory of stochastic flows the effect of a perturbation of an optimal control
is explicitly calculated. The only difficulty was to justify its differentiation. The adjoint

process is explicitly identified as p,(z).

THEOREM 6.1. If f is differentiable in the control variable u, and if the random variable
z = &, (zo0) has a conditional density ¢,(z) under the measure P*, then the inequality of
Theorem 5.1 implies

k
> (u(0) =5 (6) [ Tlos2) 5 (s, 70" )au(a)dz < 0

j=1 Rd J

This is the result of Bensoussan’s paper [1].

The method of this paper can be applied to completely observable systems by ini-
tially considering ‘stochastic open loop’ controls, systems with stochastic constraints and
deterministic systems. The adjoint process can be explicitly identified. ‘Almost minimum’
principles for ‘almost optimal’ controls can be obtained. Some of these will be discussed

in later work.
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